5.2 结构上的作用
5.2.1 结构上的大部分作用,例如建筑结构的楼面活荷载和风荷载,它们各自出现与否以及出现时量值的大小,在时间和空间上都是互相独立的,这种作用在计算其结构效应和进行组合时,均可按单个作用考虑。某些作用在结构上的出现密切相关且有可能同时以最大值出现,例如桥梁上诸多单独的车辆荷载,可以将它们以车队形式作为单个荷载来考虑。此外,冬季的雪荷载和结构上的季节温度差,它们的最大值有可能同时出现,就不能各自按单个作用考虑它们的组合。
5.2.2 对有可能同时出现的各种作用,应该考虑它们在时间和空间上的相关关系,通过作用组合(荷载组合)来处理对结构效应的影响;对于不可能同时出现的作用,就不应考虑其同时出现的组合。
5.2.3 作用按随时间的变化分类是作用最主要的分类,它直接关系到作用变量概率模型的选择。
永久作用的统计参数与时间基本无关,故可采用随机变量概率模型来描述;永久作用的随机性通常表现在随空间变异上。可变作用的统计参数与时间有关,故宜采用随机过程概率模型来描述;在实用上经常可将随机过程概率模型转化为随机变量概率模型来处理。
作用按不同性质进行分类,是出于结构设计规范化的需要,例如,车辆荷载,按随时间变化的分类属于可变荷载,应考虑它对结构可靠性的影响;按随空间变化的分类属于自由作用,应考虑它在结构上的最不利位置;按结构反应特点的分类属于动态荷载,还应考虑结构的动力响应。
在选择作用的概率模型时,很多典型的概率分布类型的取值往往是无界的,而实际上很多随机作用的量值由于客观条件的限制而具有不能被超越的界限值,例如水坝的最高水位,具有敞开泄压口的内爆炸荷载等。选用这类有界作用的概率分布类型时,应考虑它们的特点,例如可采用截尾的分布类型。
作用的其他分类,例如,当进行结构疲劳验算时,可按作用随时间变化的低周性和高周性分类;当考虑结构徐变效应时,可按作用在结构上持续期的长短分类。
5.2.4~5.2.7 作为基本变量的作用,应尽可能根据它随时间变化的规律,采用随机过程的概率模型来描述,但由于对作用观测数据的局限性,对于不同问题还可给以合理的简化。譬如,在设计基准期内结构上的最不利作用(最大作用或最小作用),原则上也应按随机过程的概率模型,但通过简化,也可采用随机变量的概率模型来描述。
在一个确定的设计基准期T内,对荷载随机过程作一次连续观测(例如对某地的风压连续观测30-50年),所获得的依赖于观测时间的数据就称为随机过程的一个样本函数。每个随机过程都是由大量的样本函数构成的。
荷载随机过程的样本函数是十分复杂的,它随荷载的种类不同而异。目前对各类荷载随机过程的样本函数及其性质了解甚少。对于常见的活荷载、风荷载、雪荷载等,为了简化起见,采用了平稳二项随机过程概率模型,即将它们的样本函数统一模型化为等时段矩形波函数,矩形波幅值的变化规律采用荷载随机过程中任意时点荷载的概率分布函数来描述。
对于永久荷载,其值在设计基准期内基本不变,从而随机过程就转化为与时间无关的随机变量,所以样本函数的图象是平行于时间轴的一条直线。此时,荷载一次出现的持续时间,在设计基准期内的时段数=1,而且在每一时段内出现的概率=1。
对于可变荷载(活荷载及风、雪荷载等),其样本函数的共同特点是荷载一次出现的持续时间,在设计基准期内的时段数r>1,且在内至少出现一次,所以平均出现次数1。不同的可变荷载,其统计参数、以及任意时点荷载的概率分布函数都是不同的。
对于活荷载及风、雪荷载随机过程的样本函数采用这种统一的模型,为推导设计基准期最大荷载的概率分布函数和计算组合的最大荷载效应(综合荷载效应)等带来很多方便。
当采用一次二阶矩极限状态设计法时,必须将荷载随机过程转化为设计基准期最大荷载
因已规定,故是一个与时间参数无关的随机变量。
各种荷载的概率模型必须通过调查实测,根据所获得的资料和数据进行统计分析后确定,使之尽可能反映荷载的实际情况,并不要求一律选用平稳二项随机过程这种特定的概率模型。
任意时点荷载的概率分布函数是结构可靠度分析的基础。它应根据实测数据,运用检验或检验等方法,选择典型的概率分布如正态、对数正态、伽马、极值I型、极值Ⅱ型、极值Ⅲ型等来拟合,检验的显著性水平可取0.05。显著性水平是指所假设的概率分布类型为真而经检验被拒绝的最大概率。
荷载的统计参数,如平均值、标准差、变异系数等,应根据实测数据,按数理统计学的参数估计方法确定。当统计资料不足而一时又难以获得时,可根据工程经验经适当的判断确定。
虽然任何作用都具有不同性质的变异性,但在工程设计中,不可能直接引用反映其变异性的各种统计参数并通过复杂的概率运算进行设计。因此,在设计时,除了采用能便于设计者使用的设计表达式外,对作用仍应赋予一个规定的量值,称为作用的代表值。根据设计的不同要求,可规定不同的代表值,以使能更确切地反映它在设计中的特点。在本标准中参考国际标准对可变作用采用四种代表值:标准值、组合值、频遇值和准永久值,其中标准值是作用的基本代表值,而其他代表值都可在标准值的基础上乘以相应的系数后来表示。
作用标准值是指其在结构在设计基准期内可能出现的最大作用值。由于作用本身的随机性,因而设计基准期内的最大作用也是随机变量,尤其是可变作用,原则上都可用它们的统计分布来描述。作用标准值统一由设计基准期最大作用概率分布的某个分位值来确定,设计基准期应该统一规定,譬如为50年或100年,此外还应对该分位值的百分位作明确规定,这样标准值就可取分布的统计特征值(均值、众值、中值或较高的分位值,譬如90%或95%的分位值),因此在国际上也称标准值为特征值。
对可变作用的标准值,有时可以通过平均重现期的规定来定义,见附录B.2.1第3款。
当在实际工程中,由于无法对所考虑的作用取得充分的数据,不得不从实际出发,根据已有的工程实践经验,通过分析判断后,协议一个公称值或名义值作为作用的代表值。
当有两种或两种以上的可变作用在结构上要求同时考虑时,由于所有可变作用同时达到其单独出现时可能达到的最大值的概率极小,因此在结构按承载能力极限状态设计时,除主导作用应采用标准值为代表值外,其他伴随作用均应采用主导作用出现时段内的最大量值,也即以小于其标准值的组合值为代表值(见附录B.2.4)。
当结构按正常使用极限状态的要求进行设计时,例如要求控制结构的变形、局部损坏以及振动时,理应从不同的要求出发,来选择不同的作用代表值;目前规范提供的除标准值和组合值外,还有频遇值和准永久值。频遇值是代表某个约定条件下不被超越的作用水平,例如在设计基准期内被超越的总时间规定为某个较小的比率,或被超越的频率限制在规定的频率内的作用水平。准永久值是代表作用在设计基准期内经常出现的水平,也即其持久性部分,当对持久性部分无法定性时,也可按频遇值定义,在设计基准期内被超越的总时间规定为某个较大的比率来确定(详见附录B.2.2和B.2.3)。
5.2.8 偶然作用是指在设计使用年限内不一定出现,而一旦出现其量值很大,且持续期在多数情况下很短的作用,例如爆炸、撞击、龙卷风、偶然出现的雪荷载、风荷载等。因此,偶然作用的出现是一种意外事件,它们的代表值应根据具体的工程情况和偶然作用可能出现的最大值,并且考虑经济上的因素,综合地加以确定,也可通过有关的标准规定。
对这类作用,由于历史资料的局限性,一般都是根据工程经验,通过分析判断,经协议确定其名义值。当有可能获取偶然作用的量值数据并可供统计分析,但是缺乏失效后果的定量和经济上的优化分析时,国际标准建议可采用重现期为万年的标准确定其代表值。
当采用偶然作用为结构的主导作用时,设计应保证结构不会由于作用的偶然出现而导致灾难性的后果。
5.2.9 地震作用的代表值按传统都采用当地地区的基本烈度,根据大部分地区的统计资料,它相当于设计基准期为50年最大烈度90%的分位值。如果采用重现期表示,基本烈度相当于重现期为475年地震烈度。我国《建筑抗震设计规范》将抗震设防划分三个水准,第一水准是低于基本烈度,也称为众值烈度,俗称小震,它相当于50年最大烈度36.8%的分位值;第二水准是基本烈度;第三水准是罕遇地震烈度,它远高于基本烈度,俗称大震,相当于50年最大烈度98%分位值,或重现期为2475年地震烈度。
5.2.10 为了能适应各种不同形式的结构,将结构上的作用分成两部分因素:与结构类型无关的基本作用和与结构类型(包括外形和变形性能)有关的因素。基本作用通常具有随时间和空间的变异性,它应具有标准化的定义,例如对结构自重可定义为结构的图纸尺寸和材料的标准重度;对雪荷载可定义标准地面上的雪重为基本雪压;对风荷载可定义标准地面上10m高处的标准时距的平均风速为基本风压,如此等等。而作用值应在基本作用的基础上,考虑与结构有关的其他因素,通过反映作用规律的数学函数来表述,例如,对雪荷载的情况,可根据屋面的不同条件将基本雪压换算为屋面上的雪荷载;对风荷载的情况,可根据场地地面粗糙度情况、结构外形及结构不同高度,将基本风压换算为结构上的风荷载。
5.2.11 当作用对结构产生不可忽略的加速度时,也即与加速度对应的结构效应占有相当比重时,结构应采用动力模型来描述。此时,动态作用必须按某种方式描述其随时间的变异性(随机性),作用可根据分析的方便与否而采用时域或频域的描述方式,作用历程中的不定性可通过选定随机参数的非随机函数来描述,也可进一步采用随机过程来描述,各种随机过程经常被假定为分段平稳的。
在有些情况下,动态作用与材料性能和结构刚度、质量及各类阻尼有关,此时对作用的描述首先是在偏于安全的前提下规定某些参数,例如结构质量、初速度等。通常还可以进一步将这些参数转化为等效的静态作用。
如果认为所选用的参数还不能保证其结果偏于安全,就有必要对有关作用模型按不同的假设进行计算,从中选出认为可靠的结果。
5.3 环境影响
5.3.1~5.3.2 环境影响可以具有机械的、物理的、化学的或生物的性质,并且有可能使结构的材料性能随时间发生不同程度的退化,向不利方向发展,从而影响结构的安全性和适用性。
环境影响在很多方面与作用相似,而且可以和作用相同地进行分类,特别是关于它们在时间上的变异性,因此,环境影响可分类为永久、可变和偶然影响三类。例如,对处于海洋环境中的混凝土结构,氯离子对钢筋的腐蚀作用是永久影响,空气湿度对木材强度的影响是可变影响等。
环境影响对结构的效应主要是针对材料性能的降低,它是与材料本身有密切关系,因此,环境影响的效应应根据材料特点而加以规定。在多数情况下是涉及到化学的和生物的损害,其中环境湿度的因素是最关键的。
如同作用一样,对环境影响应尽量采用定量描述;但在多数情况下,这样做是有困难的,因此,目前对环境影响只能根据材料特点,按其抗侵蚀性的程度来划分等级,设计时按等级采取相应措施。
6 材料和岩土的性能及几何参数
6.1 材料和岩土的性能
6.1.1~6.1.2 材料性能实际上是随时间变化的,有些材料性能,例如木材、混凝土的强度等,这种变化相当明显,但为了简化起见,各种材料性能仍作为与时间无关的随机变量来考虑,而性能随时间的变化一般通过引进换算系数来估计。
6.1.3 用材料的标准试件试验所得的材料性能,一般说来,不等同于结构中实际的材料性能,有时两者可能有较大的差别。例如,材料试件的加荷速度远超过实际结构的受荷速度,致使试件的材料强度较实际结构中偏高;试件的尺寸远小于结构的尺寸,致使试件的材料强度受到尺寸效应的影响而与结构中不同;有些材料,如混凝土,其标准试件的成型与养护与实际结构并不完全相同,有时甚至相差很大,以致两者的材料性能有所差别。所有这些因素一般习惯于采用换算系数或函数来考虑,从而结构中实际的材料性能与标准试件材料性能的关系可用下式表示:
由于结构所处的状态具有变异性,因此换算系数或函数也是随机变量。
6.1.4 材料强度标准值一般取概率分布的低分位值,国际上一般取0.05分位值,本标准也采用这个分位值确定材料强度标准值。此时,当材料强度按正态分布时,标准值为
当按对数正态分布时,标准值近似为
式中、及分别为材料强度的平均值、标准差及变异系数。
当材料强度增加对结构性能不利时,必要时可取高分位值。
6.1.5 岩土性能参数的标准值当有可能采用可靠性估值时,可根据区间估计理论确定,单侧置信界限值由式求得,式中为学生氏函数,按置信度1-和样本容量确定。
6.2 几何参数
6.2.1 结构的某些几何参数,例如梁跨和柱高,其变异性一般对结构抗力的影响很小,设计时可按确定量考虑。
7 结构分析和试验辅助设计
7.1 一般规定
7.1.1~7.1.3 结构分析是确定结构上作用效应的方法,结构上的作用效应是指在作用影响下的结构反应,包括构件截面内力(如轴力、剪力、弯矩、扭矩)以及变形和裂缝。
在结构分析中,宜考虑环境对材料、构件和结构性能的影响,如湿度对木材强度的影响,高温对钢结构性能的影响等。
7.2 结构模型
7.2.1 建立结构分析模型一般都要对结构原型进行适当简化,考虑决定性因素,忽略次要因素,并合理考虑构件及其连接,以及构件与基础间的力—变形关系等因素。
7.2.2 一维结构分析模型适用于结构的某一维尺寸(长度)比其他两维大得多的情况,或结构在其他两维方向上的变化对结构分析结果影响很小的情况,如连续梁;二维结构分析模型适用于结构的某一维尺寸比其他两维小得多的情况,或结构在某一维方向上的变化对分析结果影响很小的情况,如平面框架;三维结构分析模型适用于结构中没有一维尺寸显著大于或小于其他两维的情况。
7.2.4 在许多情况下,结构变形会引起几何参数名义值产生显著变异。一般称这种变形效应为几何非线性或二阶效应。如果这种变形对结构性能有重要影响,原则上应与结构的几何不完整性一样在设计中加以考虑。
7.2.5 结构分析模型描述各有关变量之间物理上、或经验上的关系。这些变量一般是随机变量。计算模型一般可表达为:
式中 —— 模型预测值;
—— 模型函数;
(=1,2,…,n) —— 基本变量。
如果模型函数是完整、准确的,变量(=1,2,…,n)值在特定的试验中经量测已知,则结果可以预测无误;但多数情况下模型并不完整,这可能因为缺乏有关知识,或者为设计方便而过多简化造成的。模型预测值的试验结果可以写成如下:
式中(=1,2,…,n)为有关参数,它包含着模型不定性,且按随机变量处理。在多数情况下其统计特性可通过试验或观测得到。
7.3 作用模型
7.3.1 一个完善的作用模型应能描述作用的特性,如作用的大小、位置、方向、持续时间等。在有些情况下,还应考虑不同特性之间的相关性,以及作用与结构反应之间的相互作用。
在多数情况中,结构动态反应是由作用的大小、位置或方向的急剧变化所引起的。结构构件的刚度或抗力的突然改变,亦可能产生动态效应。当动态性能起控制作用时,需要比较详细的过程描述。动态作用的描述可以时间为主或以频率为主给出,依方便而定。为描述作用在时间变化历程中的各种不定性,可将作用描述为一个具有选定随机参数的时间非随机函数,或作为一个分段平稳的随机过程。
7.4 分析方法
7.4.1~7.4.2 当结构的材料性能处于弹性状态时,一般可假定力与变形(或变形率)之间的相互关系是线性的,可采用弹性理论进行结构分析,这种情况下,分析比较简单,效率也较高;而当结构的材料性能处于弹塑性状态或完全塑性状态时,力与变形(或变形率)之间的相互关系比较复杂,一般情况下都是非线性的,这时宜采用弹塑性理论或塑性理论进行结构分析。
7.4.3 结构动力分析主要涉及到结构的刚度、惯性力和阻尼。动力分析刚度与静力分析所采用的原则一致。尽管重复作用可能产生刚度的退化,但由于动力影响,亦可能引起刚度增大。惯性力是由结构质量、非结构质量和周围流体、空气和土壤等附加质量的加速度引起的。阻尼可由许多不同因素产生,其中主要因素有:
(a) 材料阻尼,例如源于材料的弹性特性或塑性特性;
(b) 连接中的摩擦阻尼;
(c) 非结构构件引起的阻尼;
(d) 几何阻尼;
(e) 土壤材料阻尼;
(f) 空气动力和流体动力阻尼。
在一些特殊情况下,某些阻尼项可能是负值,导致从环境到结构的能量流动。例如疾驰、颤动和在某些程度上的游涡所引起的反应。对于强烈地震时的动力反应,一般需要考虑循环能量衰减和滞回能量消失。
7.5 试验辅助设计
7.5.1~7.5.2 试验辅助设计(简称试验设计)是确定结构和结构构件抗力、材料性能、岩土性能、以及结构作用和作用效应设计值的方法。该方法以试验数据的统计评估为依据,与概率设计和分项系数设计概念相一致。在下列情况下可采用试验辅助设计:
1 规范没有规定或超出规范适用范围的情况;
2 计算参数不能确切反映工程实际的特定情况;
3 现有设计方法可能导致不安全或设计结果过于保守的情况;
4 新型结构(或构件)、新材料的应用或新设计公式的建立;
5 规范规定的特定情况。
对于新技术、新材料等,在工程应用中特别慎重,可能还有其他政策和规范要求,也应遵守。
8 分项系数设计方法
8.1 一般规定
8.1.1 尽管概率极限状态设计方法全部更新了结构可靠性的概念与分析方法,但提供给设计人员实际使用的仍然是分项系数设计表达方式,它与设计人员长期使用的表达形式相同,从而易于掌握。
概率极限状态设计方法必须以统计数据为基础,考虑到对各类建筑结构所具有的统计数据在质与量二个方面都很有很大差异,在某些领域根本没有统计数据,因而规定当缺乏统计数据时,可以不通过可靠指标,直接按工程经验确定分项系数。
8.1.2 规定了各种基本变量设计值的确定方法。
1 作用的设计值一般可表示为作用的代表值与作用的分项系数的乘积。对可变作用,其代表值包括标准值、组合值、频遇值和准永久值。组合值、频遇值和准永久值可通过对可变作用标准值的折减来表示,即分别对可变作用的标准值乘以不大于1的组合值系数、频遇值系数和准永久值系数。
建筑结构按不同极限状态设计时,在相应的作用组合中对可能同时出现的各种作用,应采用不同的作用设计值,见下表:
|